MEDECINE ET ROBOTIQUE

MEDECINE ET ROBOTIQUE

COMPRENDRE L'IA EN MEDECINE N°1. GOOGLE PREDIT LE RISQUE CARDIO-VASCULAIRE

 

ll ne se passe plus de mois sans qu'un nouveau logiciel issu de l'intelligence artificielle ne soit déclaré "meilleur que les médecins" et présenté au public. Que signifie vraiment cette formule? Peux-t-on réellement implanter des systèmes automatiques en lieu et place des médecins? 

Dans cette rubrique nous rendons compte d'études dont les résultats sont généralisables à l'ensemble de l'intelligence artificielle médicale. En décrivant les faits scientifiques, nous espérons mettre à disposition du plus grand nombre des informations de fond permettant à chacune et chacun d'appréhender le débat de société entourant l'IA médicale.

 

GOOGLE a récemment annoncé avoir développé une intelligence artificielle capable de prédire le risque cardio-vasculaire à partir d'une simple photographie de rétine. Nous ouvrons notre série "comprendre l'IA en médecine" avec le compte-rendu de la publication scientifique parue dans la revue Nature Biomedical Engineering en mars 2018. 

Quel est le travail exécuté par les chercheurs? Quels sont leurs résultats? Comment peuvent-ils s'intégrer dans la médecine du quotidien? Réponse dans les lignes qui suivent. 

 

LA METHODE DE L'ETUDE

La rétine change au cours de la vie. Elle se modifie en fonction de certains facteurs: âge, niveau de pression artérielle, tabagisme, taux de cholestérol, diabète, obésité…autant de facteurs de risque cardio-vasculaires.

Les chercheurs ont voulu montrer qu’un algorithme d’intelligence artificielle utilisant le « deep-learning » était capable d’extraire ces informations à partir d’une simple photographie de rétine. 

Ils ont utilisé 2 bases de données issues de 2 études de surveillance médicale. La première est britannique. Elle a été conduite entre 2006 et 2010.  Plus de 67 000 fonds d’oeil ont été faits parmi 500 000 personnes. Un questionnaire relevait les facteurs de risque cardio-vasculaire et les patients devaient mesurer leur pression artérielle par auto-mesure.  La seconde est une étude américaine de suivi de la rétinopathie diabétique conduite entre 2007 et 2015 qui a permis de recueillir un peu moins de 250 000 fonds d'oeil. 


 

QU'EST-CE QUE LE DEEP LEARNING? 

En nous basant sur les explications fournies par les chercheurs de GOOGLE, essayons d'expliquer le deep-learning de façon intelligible pour le profane. 

 

LES MOTS-CLEFS: 

-Pas de programmation directe des solutions: l'ordinateur les retrouve lui-même 

-Apprentissage à partir d'exemples

-Un algorithme est une succession de calculs mathématiques 

-Le deep-learning est une succession d'équations mathématiques, fausses au début, progressivement corrigées par la machine elle-même

 

Le Deep learning ( apprentissage profond en français) est l’une des familles de technique d’apprentissage- machine. Avec cette méthode il n’est pas nécessaire de faire entrer manuellement les solutions dans la machine. Elle peut apprendre sans être programmée directement.  C’est son grand avantage. 

Il faut donc retenir que l'on ne donne pas les solutions d'avance à l'ordinateur. On lui montre des exemples, c'est-à-dire des images pour lesquelles la réponse est connue. Il va apprendre à partir de ces exemples. 

 

Prenons le cas de la rétine de fumeur. Dans la base de données, tous les fumeurs sont identifiés. 

N'oublions pas que les données utilisées proviennent de 2 études épidémiologiques médicales publiées il y a quelques années. Toutes les réponses étaient connues d'avance. Le but de l'étude était de voir si l'intelligence artificielle était capable de les retrouver.  

Les chercheurs vont créer un algorithme qui recherche les fumeurs. Puis, ils montrent les photographies de rétine de fumeur à l'ordinateur. Lorsque l'ordinateur voit juste, on lui indique. Lorsqu'il voit faux, on lui indique également. L'ordinateur retient ce qu'il fait et mémorise les résultats de ses actions. Ainsi, après une phase d'entraînement, il est capable d'identifier les caractéristiques communes à toute rétine de fumeur. Il peut maintenant identifier un fumeur ou un non-fumeur à partir de n'importe quelle photographie de rétine. 

 

 Reconnaître une image : une opération mathématique 

Comme toute programmation informatique, le deep-learning est une succession de calculs mathématiques. On parle de couches de calcul. Lorsque l'on montre les exemples à l'ordinateur, il exécute ces "couches de calcul" et ajuste lui-même les paramètres des équations mathématiques pour retrouver la bonne solution. 

 

Pour désigner ces actions, les ingénieurs parlent de "réseau neuronal profond "( deep-neural network en anglais). Il est donc composé d’une séquence d’opérations mathématiques que l’on applique à une donnée d’entrée, par exemple la valeur du pixel d’une image. Le deep-learning est le procédé par lequel le modèle apprend à corriger ses erreurs pour arriver à une solution exacte. 

Au début, le réseau neuronal est programmé au hasard. Puis, pour chaque image, la prédiction donnée par le modèle est comparée à un exemple dont le résultat exact est connu. Le modèle va alors progressivement corriger ses erreurs pour se mettre en adéquation avec l’exemple. Le processus est répété jusqu’à ce que les équations corrigées soient capables de trouver la solution exacte pour n’importe quelle image. 

 

L’expression « apprendre de ses erreurs » n’a jamais été aussi vraie qu’avec le deep-learning ! 


 

 QUELS SONT LES RESULTATS RETROUVES PAR LES CHERCHEURS ? 

1. Retrouver la présence de facteurs de risque cardio-vasculaire 

Les chercheurs ont utilisés les renseignements suivants présents dans les 2 bases de données: âge, genre, ethnie, l’indice de masse corporelle, la pression artérielle, le taux d’hémoglobine glyquée, le statut fumeur ou non. 


INDICE DE MASSE CORPORELLE: à partir du poids et de la taille d'une personne, on mesure l'indice de masse corporelle (IMC) qui permet de savoir si il y a un surpoids ou au contraire un état trop maigre

HEMOGLOBINE GLYQUEE: mesure biologique obtenue par une prise de sang qui permet d'évaluer le taux de sucre sur les 3 derniers mois. Utilisé dans le suivi du diabète

 


 

Les chercheurs ont évalué la capacité de prédiction de leurs algorithmes en les comparant avec les résultats connus de la base de données. Le modèle d'intelligence artificielle s'avère très efficace pour prédire l’âge.

La pression artérielle systolique, l’indice de masse corporelle et l’hémoglobine glyquée sont également bien prédits mais le  modèle est moins précis. 

 

2. Calculer un risque d'événement cardio-vasculaire grave dans les 5 ans 

Ensuite, les chercheurs ont entraîné le modèle à prédire la survenue d’un « accident cardio-vasculaire majeur » dans les 5 ans qui suivent le recueil des renseignements. Cette information n’était disponible que dans une seule des bases de données, UK Bio-bank. 631 patients, sur les 48 101 en ont été victimes. Les chercheurs ont donc voulu savoir si il aurait été possible de prévenir la survenue de ces accidents cardio-vasculaires. Pour cela ils ont calculé la probabilité de décès par le SCORE et l’ont comparé à la prédiction donnée par leur algorithme. Le SCORE était capable de prédire l’accident dans 72% des cas, l’algorithme dans 70% des cas. Les 2 méthodes apparaissent ainsi équivalentes. 



 

QU'EST-CE QUE LE SCORE? 

SCORE est l'acronyme de Systematic COronary Risk Evaluation (Evaluation du risque coronarien systématique). Il a été conçu sous l’égide de la Société Européenne de Cardiologie et publié en 2003. Il s'agit d'un outil de prévention médicale. Le médecin peut estimer le risque de décès par maladie cardio-vasculaire dans les 10 ans pour une personne donnée et proposer les mesures adaptées pour l'éviter. Il se présente comme un tableau à 4 entrées, un pour les hommes et un pour les femmes. On place le patient dans une case en fonction de son âge, de son taux de cholestérol, de sa pression artérielle systolique et du statut fumeur ou non fumeur. On lit le pourcentage de risque de décès par maladie-cardiovasculaire dans les 10 ans. Pour calculer le SCORE, il est donc nécessaire de réaliser une consultation médicale avec interrogatoire et une prise de sang. 

 

Ci-dessous, tableau de calcul du SCORE

 

 

SCORE.jpg


3. Quelles régions de la photographie de rétine ont-elles été utilisées par l'algorithme d'intelligence artificielle?  

 

Les algorithmes sont des calculs mathématiques qui permettent de déterminer si une image de rétine est associée à un paramètre (ici, l’âge, la pression artérielle, l’hémoglobine glyquée, fumeur ou non fumeur, l’indice de masse corporelle). Mais les chercheurs n’indiquent pas par avance à la machine quelle région de la photographie il faut regarder pour déterminer le paramètre. En s’entraînant, elle va trouver par elle-même la région à regarder pour déterminer telle ou telle donnée. 

Les chercheurs ont réussi à retrouver quelles régions ont été utilisées par la machine. Pour l’hémoglobine glyquée, il s'agit des pourtours vasculaires; pour le genre, du disque optique, des vaisseaux et de la macula. Pour la pression artérielle et l’indice de masse corporelle, il n’y avait en revanche pas de zone spécifique. Les chercheurs en déduisent que les effets de ces 2 paramètres sont diffus dans l’oeil. 

 

Nous visualisons ainsi un peu mieux ce qu’est le deep-learning médical. La machine apprend réellement par elle-même puisqu’elle part d’équations mathématiques qui lui permettent de relier une image à un paramètre, un peu comme dans un exercice de langue étrangère où il faut relier une image avec le mot correspondant. Au début, elle commet beaucoup d'erreurs. Mais, au fur et à mesure de son entraînement, elle va être capable de réduire les erreurs et de cibler les zones de la rétine utiles pour répondre à la question posée. 

 

Ci-dessous: les photographies de rétine utilisées dans l'étude

 

2.jpg

 

LA DISCUSSION DES AUTEURS. COMMENT INTERPRETENT-ILS LEURS RESULTATS? 

Les auteurs se déclarent satisfaits des résultats obtenus. L’application du deep-learning à des images de fond d’oeil isolées a permis d’identifier plusieurs facteurs de risque cardio-vasculaire: âge, genre et pression artérielle systolique. 

Ces éléments étant des composants essentiels des scores de calcul de risque de maladie cardio-vasculaire grave, les chercheurs ont émis l’hypothèse que leurs algorithmes pouvaient les calculer directement. Ceci semble confirmé par le résultat de leur deuxième expérience au cours de laquelle ils ont réussi à composer un algorithme de prédiction qui obtient la même performance que le score européen. 

 

Mais les auteurs soulignent également une importante limite de leur travail. En effet, la taille des échantillons serait trop faible. Des effectifs plus grands seraient plus adaptés au deep-learning. Les résultats gagneraient en fiabilité. 

 

QUELLE UTILITE DANS LA MEDECINE DU QUOTIDIEN? LE COMMENTAIRE DE MEDECINE-ET-ROBOTIQUE

Dans la pratique quotidienne, ce type d'intelligence artificielle apparaît être surtout un instrument de médecine de prévention. L'élément nouveau est de pouvoir retirer des renseignements précis sur une personne par une simple photographie de rétine, facile à obtenir. Si le coût de l'appareil est raisonnable, on pourrait imaginer une installation massive dans des structures collectives comme les centres de santé ou les hôpitaux, avec un résultat transmis au médecin traitant. Cette innovation pourrait donc élargir considérablement nos capacités de dépistage des maladies cardio-vasculaires.

La limite décrite par les auteurs appelle un commentaire. Selon eux, la taille des effectifs utilisés dans leur étude est trop faible. Ceci pourrait être un véritable obstacle pour le deep-learning en médecine.

En effet, pour l'épidémiologie médicale, les effectifs des 2 bases de données utilisées par les chercheurs sont importants. En dehors des grandes séries de suivi des maladies chroniques qui rassemblent les données de dizaines de milliers de personnes, il sera difficile d'obtenir davantage. 

Si elle n'était pas surmontée, cette contrainte pourrait interdire à l'IA de se développer pleinement en médecine. 

 

Référence:https://www.nature.com/articles/s41551-018-0195-0.epdf?author_access_token=YWBi0EzCgfAVb_S540xl-tRgN0jAjWel9jnR3ZoTv0OMsbBDq-7d5VZef-dAA8S4kHGY_hXONc93gwXXjuO908b_ruUDVkgB5jW3RnvvRdLFLmvpTsPku5cXZoTEtr09fPvTK40ZbWzpoOGfLab-NA%3D%3D

 

LES AUTRES ARTICLES DE LA RUBRIQUE

COMPRENDRE L’INTELLIGENCE ARTIFICIELLE EN MEDECINE N°2: DEPISTER LE MELANOME

 

 

COMPRENDRE L'IA EN MEDECINE N°3: DIAGNOSTIQUER DES METASTASES DE CANCER DU SEIN 



02/05/2018
0 Poster un commentaire

Inscrivez-vous au site

Soyez prévenu par email des prochaines mises à jour

Rejoignez les 23 autres membres